Implicit Discourse Relation Detection via a Deep Architecture with Gated Relevance Network

نویسندگان

  • Jifan Chen
  • Qi Zhang
  • Pengfei Liu
  • Xipeng Qiu
  • Xuanjing Huang
چکیده

Word pairs, which are one of the most easily accessible features between two text segments, have been proven to be very useful for detecting the discourse relations held between text segments. However, because of the data sparsity problem, the performance achieved by using word pair features is limited. In this paper, in order to overcome the data sparsity problem, we propose the use of word embeddings to replace the original words. Moreover, we adopt a gated relevance network to capture the semantic interaction between word pairs, and then aggregate those semantic interactions using a pooling layer to select the most informative interactions. Experimental results on Penn Discourse Tree Bank show that the proposed method without using manually designed features can achieve better performance on recognizing the discourse level relations in all of the relations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stacking Gated Neural Architecture for Implicit Discourse Relation Classification

Discourse parsing is considered as one of the most challenging natural language processing (NLP) tasks. Implicit discourse relation classification is the bottleneck for discourse parsing. Without the guide of explicit discourse connectives, the relation of sentence pairs are very hard to be inferred. This paper proposes a stacking neural network model to solve the classification problem in whic...

متن کامل

Learning better discourse representation for implicit discourse relation recognition via attention networks

Humans comprehend the meanings and relations of discourses heavily relying on their semantic memory that encodes general knowledge about concepts and facts. Inspired by this, we propose a neural recognizer for implicit discourse relation analysis, which builds upon a semantic memory that stores knowledge in a distributed fashion. We refer to this recognizer as SeMDER. Starting from word embeddi...

متن کامل

Leveraging Hierarchical Deep Semantics to Classify Implicit Discourse Relations via Mutual Learning Method

This paper presents a mutual learning method using hierarchical deep semantics for the classification of implicit discourse relations in English. With the absence of explicit discourse markers, traditional discourse techniques mainly concentrate on discrete linguistic features in this task, which always leads to data sparse problem. To relieve this problem, we propose a mutual learning neural m...

متن کامل

Bilingually-constrained Synthetic Data for Implicit Discourse Relation Recognition

To alleviate the shortage of labeled data, we propose to use bilingually-constrained synthetic implicit data for implicit discourse relation recognition. These data are extracted from a bilingual sentence-aligned corpus according to the implicit/explicit mismatch between different languages. Incorporating these data via a multi-task neural network model achieves significant improvements over ba...

متن کامل

Linguistic Properties Matter for Implicit Discourse Relation Recognition: Combining Semantic Interaction, Topic Continuity and Attribution

Modern solutions for implicit discourse relation recognition largely build universal models to classify all of the different types of discourse relations. In contrast to such learning models, we build our model from first principles, analyzing the linguistic properties of the individual top-level Penn Discourse Treebank (PDTB) styled implicit discourse relations: Comparison, Contingency and Exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016